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From the laws of macroscopic electrostatics of conductors (in particular, the 
existence of screening), taken as given, one can deduce universal properties for 
the thermal fluctuations in a classical Coulomb system at equilibrium. The 
universality is especially apparent in the long-range correlations of the electrical 
potentials and fields. The charge fluctuations are derived from the field fluctua- 
tions. This is a convenient way to study the surface charge fluctuations on a 
conductor with boundaries. Explicit results are given for simple geometries. The 
potentials and the fields have Gaussian fluctuations, except for a short-distance 
cutoff. 
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1. I N T R O D U C T I O N  

A salient p roper ty  of  mat te r  is the screening effect: mat te r  "in thermal  
equi l ibr ium does not  tolerate  any charge inhomogenei ty  over more  than a 
few in termolecular  distances. ''(~) In the present  paper ,  we consider  those 
systems which can be described as made  up of  charged particles,  interact ing 
through Coulomb ' s  law, to which equi l ibr ium classical (i.e., non -quan tum)  
statistical mechanics is appl icable  (for instance, electrolytes);  then, 
screening has especially rich and simple consequences. F r o m  the existence 
of screening, taken as given, it is possible to deduce quant i ta t ive proper t ies  
of the corre la t ion functions. F o r  instance, in the bulk,  the charge-charge  
correla t ion function obeys the wel l -known St i l l inger-Lovet t  sum rules; (2) 
other  quant i ta t ive  proper t ies  hold  near  walls or  interfaces. (3) There is a 
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delicate interplay between the statistical mechanics of correlations and the 
validity of macroscopic electrostatics. 

In the standard approaches, the focus is on the charges. One assumes 
that an external charge is screened and, using linear response theory, one 
obtains information about the charge correlations. The purpose of the 
present paper is to revisit the subject with the focus put on the electric 
potential, the electric field, and their correlations. From this alternative 
point of view, it is possible to rederive known results in a way that we 
believe is often simpler and also to obtain new results. The present method, 
which relies on the validity of macroscopic electrostatics, is especially appro- 
priate for studying surface properties such as surface charge correlations. 

The Coulomb systems considered in the present paper form a large 
class of models. The one-component plasma is a model such that identical 
particles of one sign (say positive) are immersed in a neutralizing, inert, 
continuous background of the opposite sign. The two-component plasma is 
made up of two species of oppositely charged particles; a classical theory 
is possible only if some short-range interaction is also present, to prevent 
oppositely charged particles from collapsing on each other. One could also 
consider more complicated models, with more than two species of particles, 
a nonuniform one-particle potential added, etc. We shall only require that 
the model be a conductor, in that sense that the laws of macroscopic elec- 
trostatics are assumed to be obeyed for length scales large compared to the 
microscopic characteristic lengths of the model; for instance, an additional 
localized charge Q brought into the fluid should be perfectly screened, i.e., 
surround itself with a microscopic polarization cloud of charge - Q .  

We shall also consider models with a two-dimensional Coulomb inter- 
action: in two dimensions, the potential at a distance r from a unit point 
charge is - In ( r /L )  (where L is some fixed length) instead of the familiar 1/r 
which holds in three dimensions. Two-dimensional Coulomb systems made 
up of oppositely charged particles exhibit the Kosterlitz-Thouless phase 
transition(4): while they are conductors above some transition temperature, 
they become dielectrics below that temperature. A similar transition occurs 
for one-dimensional systems with a logarithmic interactionJ 5) The con- 
siderations of the present paper apply only to the conducting phase, i.e., 
above the transition temperature. 

The present approach aims to provide an easy to visualize, physically 
reasonable picture of classical Coulomb fluids. No attempt is made at 
mathematical rigor. Since a basic ingredient is macroscopic electrostatics, 
a number of words will be used with a macroscopic meaning. "Inside" or 
"outside" a Coulomb fluid will mean "at a distance from the walls large 
compared to the microscopic scale." "Surface charge" will mean "charge in 
a layer of microscopic thickness under the surface." Etc. 
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The two-point correlations inside and outside a three-dimensional 
Coulomb system are discussed in Sections 2 and 3, respectively. In Section 4, 
we establish a general method for deriving the surface charge correlations. 
Examples are given in Section 5. Section 6 is about conducting surfaces. 
Section 7 is about systems with the two-dimensional logarithmic Coulomb 
interaction. In Section 8, it is shown that potential and field fluctuations are 
Gaussian (except for microscopic distances). 

2. INSIDE A COULOMB SYSTEM 

In this section, we consider some region inside a three-dimensional 
classical Coulomb fluid at equilibrium. This fluid is not necessarily homo- 
geneous. 

2.1. Potential  and Field Correlations 

Let ~(r) be the microscopic electrical potential at point r. We wish to 
rederive the asymptotic formula for the potential-potential correlation 
function (6) 

1 
fl(~(r) ~b(r ' ))r~ I r -  r ' - ---~ '  [r-r ' ]--- ,  oo (2.1) 

where fl is the inverse temperature ( . . .>  r means a truncated equilibrium 
statistical average: ( AB> r = < AB> -- ( A > ( B>. 

For deriving (2.1), we use screening and linear response. Let us put into 
the fluid an infinitesimal test charge q at r. The Hamiltonian H o of the fluid 
must now be supplemented with the fluid-test charge interaction term, 
which can be written as H '  = q~b(r), where ~b is the potential due to the fluid; 
it sould be noted that ~b is defined as not including the potential due to q. 
By linear response theory, the average of this potential at some point r' is 
changed by 

(~b(r')>q -- (~b(r')> = --flq< ~b(r) ~(r')> r (2.2) 

where ( . - - )q  means a statistical average computed with the full 
Hamiltonian H0-~ H' ,  while ( . . - )  is an average computed with Ho only. 
Our assumption about screening is that q surrounds itself with a polariza- 
tion cloud of microscopic size, of charge - q ;  the rest of the system is 
unchanged, except that, in the case of an insulated conductor, charge 
conservation requires that a charge + q spreads on the walls. Therefore, for 
J r ' - r [  large compared to the microscopic scale, the 1.h.s. of (2.2) is the 
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potential due to a pointlike charge - q  at r and a surface charge +q;  at r' 
inside the conductor, that surface charge creates a constant potential q/C, 
where C is the capacitance. Altogether, for an insulated conductor, 

q q 
(~b ( r ' ) ) q - (~b ( r ' ) )=  I r - r ' l  F ~  (2.3) 

From (2.2) and (2.3), one obtains 

1 1 
/~(r ~b(r')> T (2.4) 

I r - r ' l  C 

For a grounded conductor, no surface charge appears, and the last term in 
(2.3) and (2.4) must be omitted. If the system becomes infinitely large, 1/C 
goes to zero. Thus, for infinite systems, one recovers (2.1) in all cases. 

From our derivation, the "asymptotic" validity of (2.1) (for an infinite 
system) now has a more explicit meaning: (2.1) can be considered as an 
equality provided I r - r ' l  is large compared to the microscopic scale (the 
screening length). From now on, we shall write (2.1) and similar equations 
as equalities, with the understanding that there is some microscoic short- 
distance cutoff. This point of view, commonly used in field theory or in the 
theory of critical phenomena, is convenient for studying those properties 
which are independent of the microscopic detail, i.e., universal. 

Since the electrical field is E~(r)= -0~r  the field-field correlation 
function is easily obtained from (2.4) (with or without the last term) as 

0 2 1 
f l (  Eu(r) E~(r') ) r _  - -  - -  

Or u Or" I r -  r'l 

3(r - r')~ (r -- r')v -- 6uv(r -- r') 2 

I r - r ' l  5 
(2.5) 

while ( E ( r ) )  = 0, since ( ~ ( r ) )  is a constant inside a conductor. 

2.2. Charge Correlations 

The charge density p(r) is related to the potential ~(r) by Poisson's 
equation A~ = -4rip.  Thus, by taking the Laplacian on r in both sides of 
(2.4), one obtains 

f l (p(r)  ~(r ' ) )  r = 6 ( r - r  ') (2.6) 
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Of course, writing the r.h.s, of (2.6) as a delta function disregards some 
spreading and microscopic structure for small distances. But the simplified 
form (2.6) is enough for correctly giving, by integration upon r, 

fl I dr (p(r )q~(r ' ) ) r= 1 (2.7) 

which is the Carnie-Chan sum rule. (7) 
In the case of a homogeneous fluid, the Carnie-Chan sum rule is equiv- 

alent to the Stillinger-Lovett ~2) sum rule. We can retrieve that equivalence 
by taking the Laplacian on r' in both sides of (2.7), with the result 

-4nfl(p(r) p(r ' ))  r =  A~(r - r') (2.8) 

(Here the assumption that the fluid is homogeneous is necessary, because 
actually stands for some peaked function of r - r ' ;  if the fluid were non- 
homogeneous, the microscopic width of that peak would be a function of r', 
and taking the Laplacian on r' would generate additional terms.) From 
(2.8), one obtains 

f (p(r) p(r ' ))  = (2.9a) r dr, 0 

and (after an integration by parts) 

2rr,8 -- r')2 3 f (p(r) p(r'))r(r d ( r - r ' )  = 1 (2.9b) 

Equations (2.9a) and (2.9b) are the well-known Stillinger-Lovett sum rules; 
it is amusing that they can be written in the form (2.8), which, again, 
disregards the microscopic detail. 

3. OUTSIDE A C O U L O M B  SYSTEM 

We now consider correlations involving at least one point outside the 
boundaries of a conductor. 

3.1. Potential  and Field Correlat ions Across the Boundary 

We want to compute the potential-potential correlation (~b(r)~b(r'))r 
when r is inside the Coulomb fluid and r' is outside. We can repeat the 
reasoning of Section 2.1, considering the response to an infinitesimal test 
charge q at r. The only difference is that the induced surface charge q, which 
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appears in the case of an insulated conductor, creates at r' outside the con- 
ductor a potential qF(r') rather than q/C. This function F(r') is determined 
by macroscopic electrostatics: it is the potential created at r' when the 
conductor carries the total charge 1. Its explicit form can be obtained for 
simple shapes of the conductor. / From (2.2), we now obtain 

1 
/ ~ ( ~ b ( r ) ~ b ( r ' ) ) r = - -  F(r') (3.1) 

Ir--r 'l  

The same result can be obtained by assuming that the test charge is put at 
r'; the total potential of the conductor then is qF(r'), because F can be regar- 
ded as an element of an inverse capacitance matrix, which is known to be 
symmetrical. 

The last term of (3.1) must be omitted in the case of grounded con- 
ductor. It vanishes anyhow in the limit of an infinitely large conductor (such 
as, for instance, a conducting fluid filling a half-space). 

From (3.1), one finds a field-field correlation which is again (2.3). 

3.2. Potential  and Field Correlations Outside 

Finally, we want to compute the potential-potential correlation 
(~b(r) ~b(r'))7-when both points r and r' are outside the Coulomb fluid. We 
still consider the response to an infinitesimal test charge q at r. The total 
potential change at r' is some function qG(r, r'), with G(r, r') determined by 
macroscopic electrostatics: G(r, r') is the total potential change at r' when a 
unit point charge is put at r. In the case of a finite conductor, for determin- 
ing G one must specify whether the conductor is insulated or grounded. G 
is explicitly computable for simple shapes of the conductor. 

The potential change due to the fluid only is q[ G(r, r ' ) -  I r -  r'l -~ -I, 
and (2.2) gives 

1 
fl(~b(r) q ~ ( r ' ) ) r = - -  G(r, r') (3.2) 

I r - r ' l  

From (3.2), one finds for the field-field correlation 

a2 [ 1 G(r,r ')] (3.3) fl(E~(r)E~(r'))r ar, ar'~ I r - r ' l  

2 In most textbooks about electrostatics, it is stated that the potential is continuous at the 
surface of a conductor. This would imply that (3.1) and (2.4) become identical when r' is on 
the surface. Actually, there is usually a potential difference across the surface of a conductor, 
due to the formation of an electrical double layer. However, a constant shift of the potential 
is of no effect on the electric field. 
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4. SURFACE CHARGE CORRELATIONS 

In the present macroscopic approach, it is natural to introduce a 
surface charge density or, which will be associated with the electrical field dis- 
continuity at the surface of the conductor. At some point r on the surface, 

4no(r) = E~ - E~(r) (4.1) 

where the index n denotes the component normal to the surface (with the 
positive direction defined as pointing toward the outside) and E~ is 
the limit of that field component as r is approached from the outside 
(inside). Therefore, the surface change density correlation function is 

1 (a(r)  a(r ' ) )  T_ OUt i n  o u t  t - - -E, , ( r ) ] [E, ,  ( r)  E~( r ' ) ] )  T (4n) 2 ( [E , ,  (r) -- (4.2) 

Using the field correlations (2.5) and (3.3), one finds the final result 

fl(tr(r) tr(r'))7-= (4re) 21  O2G(r'ar,, ~r' nr'-------~) r,e . . . .  face (4.3) 

Of course, this approach is valid only if the distance [ r - r ' l  is large 
compared to the microscopic scale. Also, the surface charge density tr has to 
be understood as being the microscopic volume charge density integrated on 
some microscopic depth. Within these liminations, the computation of the 
correlation function (4.3) has been reduced to a problem in the macroscopic 
electrostatics of conductors. 

A method for obtaining the charge correlations near the surface of a 
Coulomb system was devised by Choquard et al. ~8) a few years ago. This 
method was presented as an approximation to the Debye-Hfickel approxima- 
tion. However, it can be seen that the surface charge densities provided by the 
method of Choquard et al. have to be identical to ours (their kernel Gex t is 
identical to our function G). Therefore, our approach rephrases the method 
of Choquard et aL, without any need for invoking the Debye-Hfickel 
approximation. 

5. A FEW SPECIFIC CASES 

In order to illustrate how the present method works, we now consider 
a few specific cases. 

822/80/ I -2-29  
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5.1. Coulomb Fluid in a Hal f -Space 

The surface of the Coulomb fluid is the plane xOy, which acts as an 
impenetrable wall, confining the particles to the half-space z <0.  The 
method of images gives, in the empty half-space, 

1 1 
G(r, r') - - -  (5.1) 

I r - r ' l  I r * - r ' l  

where r * =  (x, y, - z )  is the image of r = (x, y, z). One readily finds from 
(4.3), on the plane xOy, 

1 
f l (a(r)  a ( r ' ) ) r =  8rd I r - r ' l  3 (5.2) 

Which is the result obtained in ref. 9 in the equivalent microscopic language: 
the volume charge density correlation function ( p ( r ) p ( r ' ) )  r behaves 
asymptotically, when ( x - x ' ) 2 + ( y - y ' )  2 becomes large, as F(z, z', ( x - x ' )  2 
+ (y _y,)2),  where F is a function integrable upon z and z' obeying 

0 0 dzf 
- o o  - o o  

8n2[ (x -- x')2 + (y _ y,)2] 3/2 (5.3) 

5.2. Coulomb Fluid in a Ball 

A ball of macroscopic radius R centered at the origin is filled by a 
Coulomb fluid. The method of images now gives, outside the ball, 

1 R 1 R 
a(r,  r') - -  + (5.4) 

[ r - r ' f  r [ r ' - r * [  rr' 

where the image of r has the coordinate r * =  R2r/r 2. The presence of the 
last term in (5.4) is appropriate for an insulated ball, i.e., if we want to 
study the fluctuations in an ensemble such that the total charge on the ball 
is constant, for instance, the canonical ensemble; on the contrary, if the ball 
is assumed to be allowed to exchange charge with some reservoir, say at 
zero potential (grounded ball), the last term of (5.4) must be omitted. 

Using (5.4) in (4.3) gives, for an insulated ball, 

[ '1 1 1 +2R-g fl(~(r) a ( r ' ) )  r =  8~z2 [2Rsin(O/2)] 3 (5.5) 
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where 0 is the angle between r and r'. In the case of a grounded ball, the 
last term in (5.5) must be suppressed, i.e., one must add the contribution 
+ 1/(4rO2R 3 from the total charge fluctuations. 

This contribution from the fluctuations of the total charge Q can be 
alternatively derived by assuming that, for typical configurations, Q is 
uniformly spread on the surface. Then, the corresponding energy is Q2/2R. 
If one further assumes that the average of this energy has the harmonic 
oscillator value (1/2)fl -~, using a = Q / 4 r r R  2, one finds the contribution 
1/(47r)2R 3 to/~<aa>.  

5.3. Cou lomb Fluid in a W e d g e  

Our method reproduces the results of Choquard et al. ~s) These authors 
had expressed some doubts about the reliability of their result, because it 
was not obvious that their derivation, presented as an approximation to 
the Debye-Hfickel theory, was valid for a nonsmooth surface such as a 
wedge. The present approach now puts things on the firmer basis of macro- 
scopic electrostatics, which we believe to be true, even in the case of a 
wedge. 

The results in ref. 8 are different from those obtained by Jancovici 
et al. ~~ It is now apparent that the section Wedge in ref. I0 is erroneous, 3 
as well as its quotation in Eqs. (10a) and (10b) of ref. 3. 

6. C O N D U C T I N G  S U R F A C E S  

This section is about two-dimensional Coulomb fluids, with an inter- 
action potential which is the usual 1/r one. The surface charge correlations 
can be studied by a slightly modified version of the method used in 
Section 4. The field correlation function in three-dimensional space is still 
given by (3.3), and the surface charge correlations still can be expressed in 
terms of the correlations between the field discontinuities on the surface. 

In the case of a conducting plane, one finds 

1 
f l (a( r )  a(r ' )  ) T=  (6.1) 

47~ 2 I r - r ' l  3 

(This result could also have been derived by considering a s l ab  (3'1~ in the 
zero-thickness limit.) It should be noted that the plane result (6.1) is not 
identical to the half-space result (5.2). This shows that, in the case of a 
three-dimensional Coulomb fluid with boundaries, there must be some 
coupling between the surface charge and the volume charge densities. 

3 The mistake in ref. 10 can be traced to the assumption following Eq. (A.5); this assumption 
is just not true. 
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In the case of an insulated conducting spherical surface of radius R 
centered at the origin, one finds 

11 1 i] 
f l (a( r )~r( r ' ) )  T= ~ [2Rsin(O/2)]3 ~-~3 (6.2) 

where 0 is the angle between r and r'. In the case of a grounded surface, 
the last term of (6.2) must be suppressed. Therefore, 1/(4n)2R 3 is again the 
contribution from the total charge fluctuations, just as for a grounded ball 
filled with a three-dimensional Coulomb fluid, in agreement with the 
assumption that in this latter case the fluctuations of the total charge are 
localized on the surface only. The rest of ( a ( r ) a ( r ' ) )  r, however, is dif- 
ferent for a spherical surface and for a ball filled with the fluid, as seen in 
(6.2) and (5.5); again, in the case of a ball, there is some coupling between 
the surface and the volume. 

7. T W O - D I M E N S I O N A L  C O U L O M B  I N T E R A C T I O N  

The above method and results can be easily transposed to two-dimen- 
sional or one-dimensional systems with a two-dimensional Coulomb inter- 
action: the potential at r created by a unit point charge at the origin is 
-In(r/L), where L is some given length. These systems are interesting for 
a variety of reasons. In some cases they are exactly solvable models. Some 
of them appear in the theory of random matrices. 

One now obtains for the potential-potential correlations inside an 
insulated two-dimensional conductor 

f l ( r  r  r =  - I n  - -  
I r - r ' [  1 

L C 
(7.1) 

where C is the capacitance; for instance, for a disk of radius R, 
C-l= --In(R/L). Now, if the system becomes infinite, C - ~  ~ and (7.1) 
has no well-behaved thermodynamic limit, t~) However, the corresponding 
field-field correlation function is given by 

fl(Eu(r) E,(r,))r= 2 ( r -  r')~,(r - r ' ) , -  ~ , ( r  - r ') 2 
- -  i t _ r , [  4 (7.2) 

while (Eu( r ) )  =0 ,  and these expressions remain finite for infinite systems. 
The analog of the surface charge density is now a charge per unit length 
that we still call a(r). Following the same other steps as in Sections 2-4, 
one finds again that obtained the "surface" charge correlations (aa) 
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for two-dimensional or one-dimensional systems with logarithmic inter- 
actions reduces (for macroscopic distances) to a macroscopic electrostatics 
problem: finding G(r, r'), the total potential at r '  outside a conductor when 
a unit point charge has been put at r (also outside). For the explicit 
calculation of G, a specifically two-dimensional tool is provided by the 
theory of functions of a complex variable and conformal transformations. 

For a Coulomb fluid in a half-plane (the fluid is assumed to fill the 
y < 0 domain of the xyO plane), one finds 

1 
f l ( a ( x )  t r ( x ' ) ) r =  2rc2(x_x,) 2 (7.3) 

which is the result given in ref. 9 in microscopic language. Similarly, on an 
infinite conducting line, one finds 

1 
f l ( tr(x)  a ( x ' ) )  = rc2(x_x,)2 (7.4) 

(a result previously derived by a different method t 12)). 
For a Coulomb fluid in a disk of radius R centered at the origin, one 

finds 

1 
fl(tr(r) tr(r '))  = 2zc212 R sin(O/2)]2 (7.5) 

where 0 is the angle between r and r'. This result is valid both for an 
insulated and a grounded disk. In the case of a three-dimensional ball, 
grounding gave to the surface charge correlation function (5.5) an addi- 
tional contribution coming from the fluctuations of the total charge. It is 
remarkable that such an additional term does not occur in two dimensions. 
The reason is that the energy associated with a total charge fluctuation Q 
on a disk is infinite, since increasing the charge Q by bringing in an addi- 

o o  
tional charge fiQ from far away costs an energy Q fiQ JR dr~r, where the 
integral diverges. Thus, fluctuations of the total charge cannot occur. 

As an illustration of the method of conformal transformations, let 
us consider a Coulomb fluid in a wedge. We use polar coordinates (r, 0). 
The fluid is assumed to fill the two-dimensional wedge ? < 0 < 2 n ;  the 
domain 0 < 0 < ), is empty. For finding G in the wedge 0 < 0 < ~, we can 
start from its half-plane (y = n) expression in terms of complex coordinates 
[ z = r exp( iO) ] 

s  (7.6) Gr=" = l n  z - - z '  
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and make the conformal transformaton z --* z ~/r which relates the half-plane 
and the wedge. Thus, 

1 r 2 ~ + r ' 2 ~ - 2 r ~ r ' ~ c o s o r  ') 

G r = ~ In r2 ~ + r,2~ _ 2r~r,~ cos ~(O - O') (7.7) 

where ~t = rr/),, and one finds 

o~ 2 ( r r ' )  ~ - l  

fl(tr(r) tr(r')> = 2rr2 ( r~_ s r ,~ )2  (7.8) 

where s = + 1 ( - 1  ) if the two points r and r'  are on the same side (different 
sides) of the wedge. 

Other specific cases are solved in refs. 13 and 14. 

8. G A U S S I A N  B E H A V I O R  OF THE POTENTIAL A N D  
FIELD F L U C T U A T I O N S  

In Sections 2 and 3, we have obtained the two-point correlations for 
the electrical potential and field, except for their microscopic distance 
behavior. We now want to prove the stronger statement that the fluctua- 
tions of these quantities are "almost" Gaussian, with the above-mentioned 
covariances (the meaning of "almost" will be explained later). 

Showing that the fluctuations are Gaussian is a step toward better 
understanding why the finite-size corrections to the free energy of a Coulomb 
system ~15~ are similar to those of a critical field theory: the Gaussian model. 

The basic ingredient of the proof (already used in wavenumber space 
in ref. 15) is the assumption that the screening response (2.3) remains of the 
same form, linear in q, even if q is no longer infinitesimal, but is an external 
point charge of arbitrary magnitude. Now, a linear response to a f in i t e  
(noninfinitesimal) perturbation characterizes a Gaussian distribution. As a 
pedagogical example, consider a particle in a one-dimensional potential 
V(x) .  A simple calculation shows that if, in thermal equilibrium, the 
average displacement of the particle under an additional force q is 
proportional to q, then V(x )  is a harmonic oscillator potential, and the 
probability density e x p [ - f l V ( x ) ]  is Gaussian. 

For a proof  in the present case of a Coulomb fluid, we study the 
cumulants, considering, for instance, an insulated fluid with three- 
dimensional Coulomb interactions. The argument is an follows. Place at 
n = 1 points r~, r 2 ..... rn_ 1 (chosen inside or outside the fluid) point charges 
ql, q2 ..... qn_~. Let r~ be some point, inside or outside; if inside, rn is 
assumed to be at a distance large compared to the microscopic scale from 
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those points among (rl, r2 ..... r ,_ l )  which are inside. Since macroscopic 
electrostatics says that the potential-charge relations are linear, the 
response of ~b(r,) is given by an obvious generalization of what has been 
derived in Sections 2 and 3: 

n - - I  

(~(r,))Cq, ~ = (~( r , ) )  + ~ a,q, (8.1) 
i = l  

where <. >{q/} means  an average computed with the full Hamiltonian 
g - , n  - -  1 including the interaction term ~i=~ q,.~b(r;), while <. > means the average 

when there are no charges qi. The coefficients a; are those ones obtained 
in Sections 2 and 3: 

1 1 

a , =  I r , - r . I  ~ C 

a i =  
1 

~- F(ro,t) 
I r , - r . I  

if both r~ and r. are inside 

if one member (ro,t) of the pair (r~, r,) 

is outside and the other one inside 

1 
~- G(r~, r.) if both rj and r. are outside (8.2) ai= [ri--r,[ 

By definition, 

( { exp[ . =1 --f lZi=~ qi~b(ri)]} ~b(r.)) 
(~b(r,,)> {q,I - ( e x p [ - f l  ~ 7 -  l q,.~b(r,.)] ) (8.3) 

Rewriting the r.h.s, of (8.3) as a logarithmic derivative and combining (8.1) 
and (8.3), one obtains 

10([  1) ---~Oq-----~ln exp --fl q ; ~ b ( r i )  = (~b ( r , ) )+  E a,q, (8.4) 
i=  1 qn • 0  i =  1 

Since the cumulants (or truncated correlation functions) ( . . . ) r  of the 
potential ~b are defined by the expansion in powers of qi 

ln lexp I --fli~=l qiq~(ri)] l 
T 

= ~,  (~b(rl) '~' ~b(r2) "~.. .  $ ( r , ) ' " )  ( __flql)m,( __flq2),,2 .." ( __flq,)m. 
0 m]! m2! . . .m. !  

(8.5) 
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(where the prime indicates the absence of the term with all m's simul- 
taneously vanishing), a comparison between (8.4) and (8.5) shows that all 
cumulants of total order m~ + m 2 + -.- + m,, higher than 2 and with m, = 1 
vanish. 

The above result can be rephrased as follows. Consider the cumulant 
(~b(rl) ~(r2)--.  ~b(rp)) r, with p >  2. That cumulant vanishes provided that 
one point at least, say rp, is at a distance large compared to the micro- 
scopic scale from all those other points which are inside the fluid; these 
other points, however, might be at arbitrary distances (including zero) 
from each other. Similar properties hold for the electric fields. 

Were it not for the restriction about the position of rp, the vanishing 
of the cumulants of order larger than 2 would imply that the ~b(r;) 
are jointly Gaussian. With the restriction added, the statistics become 
"generalized Gaussian." This restriction actually is not very drastic, or at 
least is of a kind which currently occurs in field theory. In the simple case 
of a homogeneous infinite system, the covariance fl(tb(rl)~b(r2))= 
1/Irl-r_,l corresponds to a Gaussian probability density proportional 
to exp[-(fl/8n)~(V~b)2d3r], a form which is not unexpected since 
(1/8;~)(V~b) 2 is just the Coulomb energy density expressed in terms 
of the electrical field -V~b. It is well known that this Gaussian field 
theory actually becomes singular for short distances and the average 
(~b(rl)~b(r2)...~b(re)) is not properly defined when there are coincident 
points; some regularization is necessary. A most important property is that, 
at least in the absence of coincident points (i.e., when all distances are 
large compared to the microscopic cutoff), Wick's theorem can be straight- 
forwardly used for expressing (~b(rl) ~(r2) . . .  ~(rp)) in terms of the 2-point 
function (~(r t )  ~b(r2)) = 1/fl Jr1 - rz [ .  

The Gaussian behavior of the electrical fields follows. 
Our result about the higher-order cumulants had been previously 

obtained, by a different method, in the special case of an infinite 
homogeneous one-component plasmaJ 16~ It should be noted that the quan- 
tities V~ ut which were shown to have Gaussian fluctuations in ref. 6 are not 
the full potentials ~b considered here. 

The present considerations can be easily transcribed to the case of a 
two-dimensional (logarithmic) Coulomb potential. 

9. C O N C L U S I O N  

The universal validity of macroscopic electrostatics implies in particular 
universal response properties for conductors. Whenever classical statistical 
mechanics is applicable, these response properties imply in turn universal 
properties for the equilibrium thermal fluctuations. Independent of the 
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details of the microscopic constitution of the conductor, for length scales 
large compared to the microscopic ones, the potential and field fluctuations 
are Gaussian with universal covariances (outside the conductor, things 
depend on its geometry, but again not on its microscopic constitution). The 
surface charge fluctuations are also universal, depending only on the 
geometry. The volume charge fluctuation also have universal properties, but 
in a less explicit way, since the universality then appears only in the form of 
sum rules. 

Unfortunately, when quantum mechanics is used, the universal 
response properties no longer imply simple universal static (equal-time) 
correlations, because of the more complicated form of the linear response 
theory. One can write quantum sum rules for the correlations in the special 
case of the one-component plasma, c17"~~ but these sum rules involve the 
nonuniversal plasma frequency. For more general quantum models, no 
sum rules are known for static or (real) time-dependent correlations. 
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